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Abstract. We apply the meson cloud model to the calculation of non-singlet parton distributions in the
nucleon sea, including the octet and the decuplet cloud baryon contributions. We give special attention to
the differences between non-strange and strange sea quarks, trying to identify possible sources of SU(3)
flavor breaking. An analysis in terms of the κ parameter is presented, and we find that the existing SU(3)
flavor asymmetry in the nucleon sea can be quantitatively explained by the meson cloud. We also consider
the Σ+ baryon, finding similar conclusions.

1 Introduction

The presence of a flavor asymmetry in the light antiquark
sea of the proton is now clearly established [1,2]. It can be
expressed either in terms of the difference ∆(x) = d(x) −
u(x), or in terms of the ratio R(x) = d(x)/u(x). The fact
that this difference is larger than zero (or that the ratio
is larger than one) is usually referred to as SU(2) flavor
symmetry breaking in the proton sea.

We will discuss in this paper the non-perturbative ori-
gin of the breaking of flavor symmetry, both at the SU(2)
and at the SU(3) level. To this end, we will study the sup-
pression factor of u antiquarks in the SU(2) case, defined
as

κ(2) =

∫ 1
0 dxxd(x, µ2)∫ 1
0 dxxu(x, µ2)

, (1)

and the suppression factor of strangeness in the SU(3)
case:

κ(3) =

∫ 1
0 dx[xs(x, µ2) + xs(x, µ2)]∫ 1
0 dx[xu(x, µ2) + xd(x, µ2)]

. (2)

We notice that in the limit of exact SU(2) (SU(3)) flavor
symmetry κ(2) = 1 (κ(3) = 1). The CCFR collaboration
has measured [3] κ(3) � 0.37 ± 0.05 (0.477 ± 0.05) in an
LO (NLO) QCD analysis. Uncertainties apart, it is clear
that there is a substantial violation of the SU(3) flavor
symmetry. In the non-strange light antiquark sector, the
use of the standard parameterizations leads to κ(2) ∼ 1.3
[4,5], indicating also a strong violation of the SU(2) flavor
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symmetry in the proton sea. At the same time, the SU(2)
charge symmetry is believed to hold within the baryon
octet, i.e., d(x) − u(x) in the proton is equal to u(x) −
d(x) in the neutron. An interesting question is how SU(3)
charge symmetry is broken within the baryon octet. If the
symmetry were exact, this would mean, for instance, that
s(x) − s(x) in the proton should be equal to d(x) − d(x)
in the Σ+. However, as calculated by the authors of [7–
9], this is not the case, and in the present work we also
investigate the origins of the breaking of this symmetry.

In QCD, exact SU(3) symmetry implies that the u,
d and s quarks have the same mass. Since the strange
quark mass, ms, is significantly larger than the up and
down quark masses, the symmetry is only approximate.
At the hadronic level, exact SU(3) symmetry also implies
that the masses of baryons or mesons belonging to the
same multiplets are all equal. Clearly this is not the case
and the masses within the baryon multiplets differ among
themselves by more than 30%. The mass discrepancy is
even more pronounced in the meson octet.

Another consequence of the SU(3) symmetry at the
hadronic level is that the coupling constant in a generic
baryon–baryon–meson (gBγ5BM) vertex should be the
same for all of B, B and M . Since these three states to-
gether must form a SU(3) singlet state, and the mesons
are usually in octet states, it follows that the product of
the two baryon representations must also be in a SU(3)
octet state. Out of the (BB) product 8 × 8, we get two
distinct octets and therefore two independent coupling
constants. This is the origin of the two SU(3) constants,
F and D. When we consider some particular baryon–
baryon–meson vertices, additional (Clebsch–Gordan) fac-
tors appear, so that the final couplings are different from
each other. However, exact SU(3) symmetry imposes well-
defined connections between them. Finally, the analysis of
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the experimental data determines the relation between F
and D in terms of the parameter [10]

αD =
D

D + F
� 0.64. (3)

We can make use of QCD sum rules (QCDSR) to calcu-
late the above mentioned coupling constants [11,12]. In
this approach we are able to identify the SU(3) break-
ing sources affecting the couplings, which are mainly the
quark and hadron mass differences. The different values of
the condensates and other QCDSR parameters also play
an important role.

As for the origin of the asymmetry in the light anti-
quark distributions, there are now strong indications that
part of the nucleon sea comes from fluctuations of the
original nucleon into baryon–meson states, i.e., from the
meson cloud [13–16]. The meson cloud model (MCM) is
dominated by hadronic quantities like hadron masses and
coupling constants. This bridge between the physics of
parton distributions and the conventional hadron physics
may also help us, by connecting one with the other, to
understand both SU(3) symmetry breaking at the hadron
and parton levels.

2 Parton distributions in the MCM

In what follows, we show the meson–baryon Fock decom-
position of the proton and of the Σ+. In the case of the
proton, most of the material has already been presented
elsewhere [14–16]. We include it here just for complete-
ness. Parton distributions in the Σ+ hyperon have been
discussed in [7–9], and we will also address them in this
work. This will enable us to make a close comparison be-
tween the proton and hyperon parton distributions.

2.1 The proton

As usual, we decompose the proton in the following pos-
sible Fock states:

|p〉 = Z[|p0〉 + |p0π
0〉 + |nπ+〉 + |∆0π+〉 + |∆+π0〉

+ |∆++π−〉 + |ΛK+〉 + |Σ0K+〉 + |Σ0∗K+〉
+ |Σ+K0〉 + |Σ+∗K0〉], (4)

where |p0〉 is the bare proton. We consider only light
mesons. The relative normalization of these states is, in
principle, fixed once the cloud parameters are given. The
normalization constant Z measures the probability to find
the proton in its bare state.

In the |MB〉 state, the meson and the baryon have
fractional momentum yM and yB , with distributions
fM/MB(yM ) and fB/MB(yB), respectively. Of course yM+
yB = 1 and these distributions are related by

fM/MB(z) = fB/MB(1 − z). (5)

The splitting function fM/MB(y) represents the probabil-
ity density to find a meson with momentum fraction y of
the nucleon and is usually given by [14]

fM/MB(y)

=
g2

MBp

16π2 y

∫ tmax

−∞
dt
[−t + (MB − Mp)2]

[t − m2
M ]2

F 2
MBp(t), (6)

for baryons (B) belonging to the octet, and

fM/MB(y)

=
g2

MBp

16π2 y

∫ tmax

−∞
dt

× [(MB +Mp)2 − t]2[(Mp − MB)2 − t]
12M2

BM2
p [t − m2

M ]2
F 2

MBp(t), (7)

for baryons belonging to the decuplet. In the calculations
we need the baryon–meson–baryon form factors appearing
in the splitting functions. Following a phenomenological
approach, we use the dipole form:

FMBp(t) =

(
Λ2

MBp − m2
M

Λ2
MBp − t

)2

, (8)

where ΛMBp is the form factor cut-off parameter. In the
above equations t and mM are the four-momentum square
and the mass of the meson in the cloud state, and tmax is
the maximum t given by

tmax = M2
py − M2

By

1 − y
, (9)

where MB (Mp) is the mass of the baryon (proton). Since
the function fM/MB(y) has the interpretation of a flux of
mesons inside the proton, the corresponding integral,

nM/MB =
∑
MB

∫ 1

0
dyfM/MB(y), (10)

can be interpreted as the number of mesons in the proton,
or the number of mesons in the air. In many works, the
magnitude of the multiplicities nM/MB has been consid-
ered as a measure of the validity of MCM in the standard
formulation with MB states. If these multiplicities turn
out to be large (� 1) then there is no justification for em-
ploying a one-meson truncation of the Fock expansion, as
the expansion ceases to converge. This may happen for
large cut-off values.

Once the splitting functions (6) and (7) are known
we can calculate the antiquark distribution in the proton
coming from the meson cloud through the convolution

qf (x) =
∑
MB

∫ 1

x

dy
y

fM/MB(y)qM
f

(
x

y

)
, (11)

where qM
f (z) is the valence antiquark distribution of flavor

f in the meson. An analogous expression holds for the
quark distributions. In performing the calculations we will
need parameterizations for the valence quark distributions
in the pions and kaons. These are taken from the literature
and are given in the appendix. We are not including the
effects of sea quarks in the mesons.
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With the above formula we can compute the d and u
distributions, their difference, d(x) − u(x), and hence the
Gottfried integral:

SG =
1
3

− 2
3

∫ 1

0
[d(x) − u(x)]dx. (12)

Before making a quantitative analysis of the d(x) − u(x)
difference we note that, apart from the meson cloud, there
could be some other non-perturbative physics necessary
to understand the experimental results. In particular, it is
natural to include the effects from the Fermi statistics of
the quarks, as suggested long ago by Field and Feynman
[22], and implemented recently in a quantitative way [15].
The idea is quite straightforward: as the proton is, pri-
marily, a uud state, it should be easier to insert a dd pair
than a uu pair in the proton sea. This follows from the fact
that there are more empty states for the insertion of a d
quark than for the insertion of a u quark1. Following [15],
we parameterize this Pauli-blocking (PB) contribution by

(d − u)PB(x) = ∆PB(n + 1)(1 − x)n. (13)

As part of the non-perturbative sea, the PB contribution
is added to the d(x) − u(x) difference coming from the
meson cloud, computed from (11).

In our quantitative analysis we have first to fix the in-
puts for the calculations (couplings and masses), then ad-
just the parameters (two form factor cut-off parameters,
∆PB and the power n of (13)) by fitting the experimen-
tal data and after that make predictions, especially for
strange partons distributions.

The coupling constants are chosen to be compatible
with SU(3) symmetry, i.e., they all follow SU(3) relations
[17]. Of course, the non-strange subset of these couplings
respects the SU(2) (isospin) symmetry. The cut-off pa-
rameters are also chosen to be compatible with SU(3)
symmetry, i.e., they are all equal within SU(3) multiplets.
As will be seen below, these choices not only reduce the
number of free parameters but will also allow us to recover
the SU(3) limit.

The masses are mp = mn = 938MeV, mπ = 138MeV,
mK = 480MeV, m∆ = 1232MeV, mΛ = 1116MeV, and
mΣ = 1189MeV. The octet coupling constants are given
by the expressions in Table 1 [17], where gpπ0p = −13.45
[18,19] and αD was given in (3). For the decuplet cou-
pling constants, in Table 2, where gp∆0π+ = 28.6/61/2 [20,
21], we also use the standard SU(3) relations between the
couplings [17].

The four parameters are adjusted by simultaneously
fitting the E866 data on d(x) − u(x) and d(x)/u(x) and
the leading pion and kaon spectra measured in [25,26].
A similar fitting procedure has already been adopted by
many authors working in the meson cloud approach. What
is new in our work is that we use a larger amount of ex-
perimental sources.

1 As shown in [23,24], possible antisymmetrization effects
between the sea and the valence quarks can spoil this naive
counting

Table 1. Octet coupling constants

gpK+Λ −1/(31/2)(3 − 2αD)gpπ0p

gpK+Σ0 (2αD − 1)gpπ0p

gpK0Σ+ 21/2(2αD − 1)gpπ0p

gpπ+n 21/2gpπ0p

Table 2. Decuplet coupling constants

gpΣ0∗K+ (21/2)/(2)gp∆0π+

gpΣ+∗K0 gp∆0π+

gp∆+π0 21/2gp∆0π+

gp∆++π− 31/2gp∆0π+

All the analyses performed so far indicate that, given
the theoretical uncertainties, it is meaningless to search
for very accurate values of these cut-off parameters. It is
presently not possible to reduce their uncertainties down
to less than 100 MeV. Therefore we will not try here to
carry out a least χ2 analysis. Many of the works [14–16]
done on this subject indicate that the cut-off parameters
must be soft (Λ � 1GeV in dipole form). Indeed, in our
attempt to have a simultaneous description of the differ-
ence ∆(x), the ratio R(x) (as defined below) and the xF

spectra of pions and kaons we find that

Λoct = 1.10GeV ; Λdec = 1.07GeV;
∆PB = 0.017; n = 10, (14)

where Λoct and Λdec are the cut-off parameters for all the
octet and decuplet vertices, respectively. We notice that
the ratio and the difference are related by [1]

R(x) =
1 +∆(x)/Σ(x)
1 − ∆(x)/Σ(x)

, (15)

where Σ(x) = d(x) + u(x) is the total antiquark distri-
bution, which may be taken from any of the available pa-
rameterizations of the parton distributions and ∆(x) =
d(x) − u(x). We follow the E866 collaboration2 and use
the CTEQ parameterization for Σ(x) and the MCM cal-
culation for ∆(x).

We point out that it is crucial for our later discussion
of SU(3) symmetry breaking that the cut-off parameters
be the same for all the members of the multiplets, includ-
ing the cut-offs involved in the production of strangeness.
Their exact values could be different, provided that all the
constraints imposed by convergence of the Fock expansion,
by data on inclusive meson production or any other ex-
perimental information, be satisfied. In any case, we stress
that the cut-offs were fixed in the reproduction of the men-
tioned experimental data, and the results presented here,

2 As the E866 collaboration measured R(x) and used the
CTEQ [6] parameterization for Σ(x) to determine ∆(x), we
are just following the inverse path. This is the most consistent
way, according to what was done in [1], to obtain R(x) from
∆(x)
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Fig. 1. a d(x)−u(x) calculated with (11) compared with E866
data; b same as a for the ratio d(x)/u(x). The dashed lines
represent our result without Pauli blocking

which include the strange sector, are predictions of the
model.

The solid lines in Figs. 1a,b show the combined effect
of meson cloud and PB effects for the d(x) − u(x) and
for d(x)/u(x), as a function of x. The dashed lines show
the effect of the meson cloud alone. The data points are
from the E866 collaboration [1,2], where the CTEQ [6] pa-
rameterization for u(x) + d(x) was used in (15) to relate
∆(x) to R(x). Our results confirm analogous calculations
performed previously by Melnitchouk, Speth and Thomas
[15], although we see that the size of our PB is signif-
icantly smaller. This difference appears because we use
more states in our Fock decomposition of the proton and
consequently find different values for the cut-off parame-
ters. We also use a slightly different parameterization of
the form factors.

In Figs. 2a,b we show respectively our fits of the pion
and kaon spectra measured in [25,26] using the param-
eters (14). The formulas used in computing the spectra
are given in detail in [16]. The expressions are exactly the
same, only the parameters are different3. In [16] we had al-
ready found a set of cut-off parameter values lying around
1GeV. The present calculation is an improvement over
the previous one because we are now including the per-
turbative effects in the ratio d(x)/u(x) and also including
Pauli-blocking effects.

When working with the sea parton distributions it
should be emphasized that in differences such as d(x) −
u(x) or s(x)− u(x) the perturbative contributions should
cancel if the production of sea partons from hard gluons
is to be insensitive to small masses, including the strange

3 The cut-offs are as in (14) and Kabs = 0.2 both for pions
and kaons

quark mass. Such a property was already used in the writ-
ing of (15). Therefore, any deviation of κ(2) and κ(3) from
1 (or x(d(x) − u(x)), etc., from zero), must have a non-
perturbative origin. As the meson cloud is the main non-
perturbative contribution, it should be quite reliable when
calculating the differences of sea distributions. Figure 1
supports this view. The ratios, on the other hand, also
include the (dominant) perturbative contribution. Thus,
in order to calculate κ(2) including this contribution, we
use the fact that

∫ 1
0 x(d(x) − u(x))dx �= 0 from non-

perturbative effects only, and rewrite (1) as

κ(2) = 1 +

∫ 1
0 dxx[d(x) − u(x)]NP∫ 1

0 dxxu(x)
, (16)

where in the denominator we have used the CTEQ pa-
rameterization [6] for the integral of the u antiquark dis-
tribution. The obtained value is

κ(2) = 1.22, (17)

compatible with the values quoted in the introduction.
For the Gottfried sum rule (12), we obtain SG = 0.255,

which is to be compared with the experimental value 0.235
±0.026, obtained by the E866 collaboration [1,2]. The cal-
culation of the multiplicities through (10) give nπN � 0.30
and nπ∆ � 0.27.

Before moving to the strange sector, it is worth notic-
ing that this value of κ(2) indicates a violation of SU(2)
flavor inside the proton which is not in conflict with the
SU(2) charge symmetry between the proton and the neu-
tron. The SU(2) charge symmetry still holds in the MCM.
In order to check this, it is enough to write the dominant
terms of the Fock expansion for the neutron cloud

|n〉 = Z[|n0〉 + |n0π
0〉 + |pπ−〉 + |∆0π0〉

+ |∆+π−〉 + |∆−π+〉], (18)

and realize that, since our coupling constants respect
SU(2), it follows that gnpπ− = gpnπ+ , gn∆−π+ =
−gp∆++π− , and gn∆+π− = −gp∆0π+ . When we substitute
these relations in (11) and use mp = mn, we arrive at the
conclusion that d(x) − u(x) in the proton is exactly the
same as u(x) − d(x) in the neutron.

In Figs. 3a–c we show, respectively, xs(x) (compared
to xs), x(s(x) − s(x)) (decomposed in its octet and de-
cuplet contributions), and s(x) − s(x) as functions of x.
Using SU(3) symmetry for the baryons, we assume that
the valence s(x) distribution in the hyperons is the same
as the valence d(x) distribution in the proton [8]. This as-
sumption is compatible with the others made previously
concerning the SU(3) symmetry at the hadronic level,
namely, that the coupling constants follow SU(3) and that
the cut-off parameters are the same within the SU(3) mul-
tiplets4. The s(x) quark distribution is harder than the
s(x) distribution because it is inside a (harder) strange

4 Even with these assumptions we will find below a SU(3)
breaking effect at the partonic level (κ(3) �= 1)
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Fig. 2. a Inclusive pion spectrum mea-
sured in [25,26] and computed with the
meson cloud model of [16] and param-
eters given in (14); b the same as a for
the kaon spectrum

baryon in the cloud, a conclusion corroborated by other
authors [27]. In Fig. 3b we can appreciate how significant
the decuplet contribution is for the x(s(x) − s(x)) asym-
metry, which is plotted in Fig. 3c against the experimental
result (shaded area) [3].

In Fig. 4 we show s(x)−u(x) in the proton. The points
represent the parameterizations CTEQ4L (full circles),
GRV98LO (open circles) and MRS99-1 (squares) and the
solid line shows the MCM result. The dashed and dotted
lines show the octet and decuplet contributions to the me-
son cloud, respectively. From this figure we can see that
the decuplet contribution is sizable, and therefore it should
be included in any study of non-singlet quantities involv-
ing the strange sea quark distributions.

When extending our analysis from 2 to 3 flavors, we
can define a quantity analogous to the d(x) − u(x) dif-
ference, i.e., a quantity which measures how blocked the
production of strange quarks is, compared to the non-
strange quarks: d(x) + u(x) − s(x) − s(x). Notice that,
from the point of view of perturbative QCD, this quan-
tity should be zero (besides, perhaps, some small mass
effects, which should not be relevant in the intermediate
or small x region). Hence, if our current view of the non-
perturbative proton sea, as generated from mesons and
from Pauli blocking, is correct this difference should also
be well described by the MCM. We show our results in
Fig. 5, and we see that our MCM curve (solid line) is com-
patible (although on the edge) with the values extracted
from the different parameterizations for the parton distri-
bution functions. We then conclude that the proportion of
strange to non-strange quarks as calculated in the MCM is

compatible with what the standard parameterizations for
parton distributions tell us. For illustration, we also show
in the dashed lines what would be d(x)+u(x)−s(x)−s(x)
in the SU(3) symmetry limit, which will be defined in (23).

The combination of parton distributions shown in
Fig. 5 is useful for the computation of the factor κ(3). In-
deed, the numerator and denominator of (2) can be rewrit-
ten, as before, as sums of a perturbative (P) plus a non-
perturbative (NP) contributions:∫ 1

0
dxx[s+s](x) =

∫ 1

0
dxx[(s+s)P+(s+s)NP](x), (19)

∫ 1

0
dxx[u+d](x) =

∫ 1

0
dxx[(u+d)P+(u+d)NP](x). (20)

Subtracting (20) from (19), dividing both sides by (20),
and assuming that all the perturbative contributions can-
cel in the numerator, we rewrite κ(3) as

κ(3) = 1 +

∫ 1
0 dxx[s+ s]NP(x) − ∫ 1

0 dxx[u + d]NP(x)∫ 1
0 dxx[u + d](x)

,

(21)
where, as in (16), we have used the CTEQ4 [6] parameter-
izations in the denominator. In the above expressions the
non-perturbative quantities are calculated with the MCM.
Using the parameters described before we find

κ(3) = 0.55, (22)

in reasonable agreement with the value quoted by the
CCFR collaboration [3]. We have checked that this num-
ber might change by ∼ 10% if other parameterizations
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Fig. 3. a xs(x) (solid line) and xs(x)
(dashed line) in the proton computed
with the MCM (using (11)); b x(s(x)−
s(x)) in the proton in the MCM. The
octet and decuplet contributions are
represented by the dashed and the dot-
ted lines, respectively; c same as b for
the difference s(x) − s(x). The shaded
area is the uncertainty range of the ex-
perimental data [3]
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Fig. 4. s(x) − u(x) in the proton ex-
tracted from several parameterizations,
and the resulting curves from the MCM
(solid line). The octet and decuplet
contributions are the dashed and the
dotted lines, respectively
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eterizations, and the result from the
MCM (solid line). The dashed line is
the MCM in the SU(3) limit

(GRV98, MRS99) were used. This would not qualitatively
change our conclusions. Therefore, we use only the CTEQ
parameterization in our analysis.

The cloud parameters used so far give an overall good
agreement with the available experimental information.
However, they are not the result of a best fit, and a dif-
ferent set of parameters could yield good results as well.
In particular, we would like to mention that our value
for gp∆0π+ is somewhat large (although still compatible
with the data) and, as was argued in [15], a value about
30% smaller might be more appropriate. We repeated our
calculation using gp∆0π+ = 22.0/61/2. The cut-off param-
eters had to be changed to Λoct = 1.11GeV and Λdec =
1.15GeV, and the new multiplicities were calculated to
be nπN � 0.30 and nπ∆ � 0.19. On the other hand,
κ(3) = 0.66 with this new set of parameters, implying less
agreement between the model and the experimental data.

We now take the SU(3) symmetry limit, which means
in our case to make the masses equal within the multi-
plets5, i.e.,

moctet
meson = (mπ +mK)/2,

moctet
baryon = (mp +mn +mΣ +mΛ)/4, (23)

mdecuplet
baryon = (mΣ∗ +m∆)/2.

As κ(3) in (21) measures the amount of symmetry break-
ing between the strange and non-strange quarks, it is re-
markable that within our SU(3) symmetry limit, we have
κ(3) = 0.96, which is in good agreement with κ(3) = 1. We
see, therefore, that in making the cloud SU(3) symmet-
ric, we recover the SU(3) flavor symmetry in the parton
distributions.

It is of capital importance to compare the SU(3) sym-
metry limit, as defined by (23), with a similar limit in the
SU(2) case. Notice that to calculate the d(x)−u(x) differ-
ence, we are already using a limit similar to that of (23).
That is, we have only one mass in the meson octet, mπ,
only one mass in the baryon octet, mp = mn, and only
one mass in the baryon decuplet, as only the ∆ is rele-
vant in that case. The bulk of the d(x) − u(x) difference
comes, then, from the mass difference between the octet

5 Other choices for the values of the masses in the symmetry
limit would, of course, result in a different value for κ(3), for
instance. The important point is that equal masses within the
multiplets indicate a tendency to recover the SU(3) symmetry

Table 3. Σ+ octet coupling constants

gπ+ΛΣ+ (2/31/2)2αDgpπ0p

gK+Σ+Ξ0 −gpπ0p

gΣ+Σ+π0 2(1 − αD)gpπ0p

g
pK

0
Σ+ 21/2(2αD − 1)gpπ0p

gΣ+π+Σ0 2(1 − αD)gpπ0p

and decuplet baryon masses. We have checked that when
mp ∼ m∆, κ(2) ∼ 1. For the d(x) + u(x)− s(x)− s(x) dif-
ference, however, the important contribution comes from
the mass differences inside the octet and decuplet states.

2.2 The sigma

For the Σ+ baryon we consider the following expansion:

|Σ+〉 = Z[|Σ+
0 〉 + |Σ+π0〉 + |Σ0π+〉 + |Λ0π+〉

+|pK0〉 + |Ξ0K+〉 + |∆++K−〉 + |∆+K
0〉

+|Σ∗+π0〉 + |Σ∗0π+〉 + |Ξ∗0K+〉]. (24)

We included the |Ξ0K+〉 and the decuplet states in the
second line of (24). These states were not considered in
[7], and the authors of [9] considered only the two lowest
lying decuplet states (Σ∗+π0, Σ∗0π+). It will be seen here
that the decuplet states play an important role in the x
dependence of the parton distributions, in spite of their
large masses.

The parton distributions in the Σ+ sea can be straight-
forwardly computed through (5)–(11), where the relevant
replacements of masses and couplings have to be made.
Following the steps of Sect. 2.1, we take the couplings ac-
cording to the SU(3) relations [17]. Hence, for the octet
coupling constants we see the entries of Table 3.

For the decuplet couplings we have Table 4. For the
cut-off parameters, we will use the same values as given
by (14).

In Fig. 6 we show the separate contributions from the
octet and decuplet states for x(d(x)− u(x)) (a), x(d(x)−
s(x)) (b), x(u(x) − s(x)) (c). The total distributions are
shown in the Fig. 6d, and they should be compared with
Fig. 4 of [7]. We qualitatively agree with them. Quantita-
tive changes are noticeable, and they occur because of the
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Fig. 6. a x(d(x) − u(x)) in the Σ+ calculated with the
MCM (solid line). The octet and decuplet contributions are
the dashed and dotted lines, respectively; b same as a for
x(d(x)− s(x)); c same as a x(u(x)− s(x)); d all the curves to-
gether, where the decuplet and octet contributions were added
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Fig. 7. x(d(x)−u(x)) in the proton, with (solid line) and with-
out (dotted line) Pauli blocking. (s(x)−u(x)) in the Σ+, with
(dashed line) and without (dot-dashed line) Pauli blocking. All
the curves were calculated in the MCM
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Fig. 8. x(d(x) − d(x)) in the Σ+ with the MCM. The octet
and decuplet contributions are the dashed and the dotted lines,
respectively

Table 4. Σ+ decuplet coupling constants

g
Σ+∆+K

0 gp∆0π+

gΣ+∆++K− 31/2gp∆0π+

gΣ+Ξ0∗K+ gp∆0π+

gΣ+Σ0∗π+ −(1/21/2)gp∆0π+

gΣ+Σ+∗π0 −(1/21/2)gp∆0π+

inclusion of the decuplet states which play a significant
role, as seen in Figs. 6b,c. The fact that x(d(x) − u(x)) >
x(u(x) − s(x)) was interpreted in [7,9] as a violation of
SU(3) charge symmetry, and this really seems to be the
case. Even more indicative of this breaking is the direct
comparison of x(d(x) − u(x)) in the proton (dotted line)
with x(s(x)−u(x)) in the Σ+ (dot-dashed line), shown in
Fig. 7. A huge discrepancy is seen between the two curves,
a result in complete disagreement with naive expectations.
As in the quark model the Σ+ is a proton with the d
quark replaced by an s quark, naively one would think
that x(d(x)−u(x)) in the proton is equal to x(s(x)−u(x))
in the Σ+.

As we saw in Sect. 2, the PB effect is important in
describing the x dependence of the light quark sea asym-
metry. From the point of view of Fermi statistics, the same
effect should be present in the Σ+, with the s quark here
playing the role of the d quark in the proton. Because of
the mass of the s quark, the x dependence of the PB in the
Σ+ may not be exactly the same as in the proton. How-
ever, to exemplify the size of the corrections from PB, we
also plot in Fig. 7 the distributions including the effect of
the PB given by (13). The solid line is for x(d(x) − u(x))
in the proton, and the dashed line is for x(s(x)− u(x)) in
the Σ+.

It seems also appropriate to extend the comparisons
to d(x) − d(x) in the Σ+, and to s(x) − s(x) in the pro-
ton. We show the d(x)−d(x) in Fig. 8, where the decuplet
and octet contributions are shown separately. In Fig. 9 we
show both differences and we clearly see the discrepancy
between them, which is again evidence of SU(3) charge
symmetry breaking. It is remarkable, however, that be-
sides the small mass of the d quark, the d(x)−d(x) asym-
metry in the Σ+ is much larger than the s(x)−s(x) asym-
metry in the proton.

Finally, in order to compare the SU(3) flavor break-
ing in sea parton distributions in the Σ+ with the pro-
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Fig. 9. x(s(x) − s(x)) in the proton (solid line) and x(d(x) −
d(x)) in the Σ+ (dashed line). Both curves were calculated in
the MCM

ton, we compute κ(3) defined in (21). The denominator in
(21) is governed by the large perturbative contributions
and is only slightly affected by the cloud component. It
is therefore reasonable to assume that it is the same for
the proton and for the Σ+. In the numerator we have
approximated

∫
dxx[s + s]NP by

∫
dxx[2s]NP in order to

avoid uncertainties associated with s(x) in the hyperon.
The resulting value for κ3 is then

κ3 � 0.85. (25)

This value of κ3 indicates a violation of SU(3) flavor in-
side the Σ+ which is weaker than that inside the proton,
whereas Figs. 5–8 show a violation of the SU(3) symmetry
between the proton and the sigma. Both symmetries are
restored in the SU(3) symmetry limit of (23), i.e., κ3 → 1
and the curves in the figures assume their expected be-
havior, with dΣ+ = sp and dΣ+ = sp.

In the context of the meson cloud model this result is
not surprising. The cloud expansion of the Σ+ involves
heavier states than those appearing in the proton expan-
sion. As a consequence, the whole Σ+ cloud will be sup-
pressed with respect to the proton cloud. Indeed, looking
at the multiplicities we observe that the probabilities as-
sociated with the hyperon states are typically one order of
magnitude smaller than those associated with the proton
states. Moreover, the strange states inside the proton are
heavier and suppressed with respect to non-strange states,
and therefore we expect (and actually observe) d > u > s.
Neglecting Pauli-blocking effects (which would slightly in-
hibit the s production in comparison with the d produc-
tion in the Σ+), we would expect the same behavior for
the Σ+ and this is exactly what we find. Quantitatively,
the suppression of s in Σ+ (with respect to d or u) hap-
pens because all the states in the cloud contain strangeness
and are nearly equally suppressed. In the proton the sup-
pression of s (always with respect to d or u) is more pro-
nounced because of the mass difference between strange
and non-strange cloud states.

3 Conclusions

In this work we have applied the meson cloud model to
study the non-perturbative aspects of parton distributions,
giving special emphasis to the strange sector. We have
adjusted the cloud cut-off parameters to reproduce the

E866 data on d(x) − u(x) and d(x)/u(x). In this proce-
dure the choices were not completely free. Instead, the
cut-off values had to be consistent with previous analyses
of other experimental information [16]. Having fixed the
parameters we moved to the strange sector. In this sense,
the results for the strange–anti-strange asymmetry and for
u + d − s − s can be considered as predictions. They are
consistent with the data. Finally, we have taken the SU(3)
limit in the meson cloud and found that, in this limit, the
parton distributions become SU(3) flavor symmetric, i.e.,
κ → 1. We have thus presented additional experimental
confirmation of the MCM. Moreover we have concluded
that the meson cloud is responsible for the SU(3) flavor
breaking in parton distributions.
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A Appendix

For the sake of completeness we list in this appendix the
parton distributions used in our calculations.

The LO parton distributions in the pion are given by
the GRS98 parameterization [4]:

xqπ
v (x,Q2) = Nxa(1 +A

√
x+Bx)(1 − x)D, (A.1)

and we neglect the sea content in the meson, that is,

d
π+

= uπ+
= uπ−

= dπ−
=

1
2
qπ
v ,

uπ0
= uπ0

= d
π0

= dπ0
=

1
4
qπ
v , (A.2)

with

N = 1.212 + 0.498s+ 0.009s2, a = 0.517 − 0.020s,
A = −0.037 − 0.578s,

B = 0.241 + 0.251s, D = 0.383 + 0.624s, (A.3)

where

s ≡ ln
ln[Q2/Λ2]
ln [µ2

LO/Λ2]
, (A.4)

is evaluated for µ2
LO = 0.26GeV2 and Λ2 = (0.204GeV)2,

valid for 0.31 ≤ s � 2.2 (i.e. 0.5 � Q2 � 105 GeV2) and
10−5 � x < 1.

For the LO parton distributions in the kaon, we also
employ the GRS98 parameterization [4]:

uK−
= uK+

= dK0
= d

K
0

= 0.541(1 − x)0.17qπ
v ,

sK+
= sK0

= sK
0

= sK−
= qπ

v − uK+
. (A.5)
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The LO parton distributions in the proton are given by
the CTEQ4L parameterization [6] at Q0 = 1.6GeV:

xqp(x,Q2
0) = A0x

A1(1 − x)A2(1 +A3x
A4)

Parton A0 A1 A2 A3 A4,

xup
v 1.226 0.443 3.465 7.589 1.146,

xdp
v 0.702 0.443 4.003 2.433 0.622,

xs(s)p 0.050 −0.200 6.877 5.644 1.000,

. (A.6)
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